CHAPTER 2 AMOUNT OF SUBSTANCE

1	Potassium nitrate, KNO_3 , decomposes on strong heating, forming oxygen and solid \mathbf{Y} as the only products.					
	(a)	A 1.00 g sample of KNO ₃ ($M_{\rm r}$ = 101.1) was heated strongly until fully decomposed into Y .				
		(i)	Calculate the number of moles of KNO ₃ in the 1.00 g sample.			
		(ii)	At 298 K and 100 kPa, the oxygen gas produced in this decomposition occupied a volume of $1.22 \times 10^{-4} \mathrm{m}^3$. State the ideal gas equation and use it to calculate the number of moles of oxygen produced in this decomposition. (The gas constant $R = 8.31 \mathrm{J K^{-1} mol^{-1}}$)			
			Ideal gas equation			
			Moles of oxygen			
			(5 marks)			
	(b)					
		(i)	State what is meant by the term empirical formula.			
		(ii)	Use the data above to calculate the empirical formula of Y .			
			(4 marks)			
	(c)	Dedu	ace an equation for the decomposition of KNO_3 into \mathbf{Y} and oxygen.			
		•••••	(1 mark)			

2 Ammonia is used to make nitric acid (HNO ₃) by the Ostwald Process. Three reactions occur in this process.				y the Ostwald Process.		
	Reaction 1	$4NH_3(g) + 5O_2(g)$	\longrightarrow	4NO(g) + 6H2O(g)		
	Reaction 2	$2NO(g) + O_2(g)$	\longrightarrow	2NO ₂ (g)		
	Reaction 3	$3NO_2(g) + H_2O(I)$	\longrightarrow	2HNO ₃ (aq) + NO(g)		
(a)	In one production run, the gases formed in Reaction 1 occupied a total volume of $4.31\mathrm{m}^3$ at $25^{\circ}\mathrm{C}$ and $100\mathrm{kPa}$.					
	Give your answe	nount, in moles, of NO er to 3 significant figur nt <i>R</i> = 8.31 J K ⁻¹ mol ⁻	es.	ed.		
				(4 marks)		
(b)		uction run, 3.00 kg of duced was used to ma		a gas were used in Reaction 1 and all of gas in Reaction 2.		
(i)	Calculate the ar	mount, in moles, of ar	nmonia ir	n 3.00 kg.		
				(2 marks)		

(ii)	Calculate the mass of NO_2 formed from 3.00 kg of ammonia in Reaction 2 assuming an 80.0% yield. Give your answer in kilograms. (If you have been unable to calculate an answer for part (b) (i), you may assume a value of 163 mol. This is not the correct answer.)				
	(3 marks)				
(c)	Consider Reaction 3 in this process.				
	$3NO_2(g) + H_2O(I) \longrightarrow 2HNO_3(aq) + NO(g)$				
	Calculate the concentration of nitric acid produced when 0.543 mol of $\rm NO_2$ is reacted with water and the solution is made up to 250 cm ³ .				
	(2 marks)				
(d)	Suggest why a leak of NO_2 gas from the Ostwald Process will cause atmospheric pollution.				
	(1 mark)				
(e)	Give one reason why excess air is used in the Ostwald Process.				
	(1 mark)				

(f)	Ammonia reacts with nitric acid as shown in this equation.		
	$NH_3 + HNO_3 \longrightarrow NH_4NO_3$		
	Deduce the type of reaction occurring.		
	(1 mark)		
3	Zinc forms many different salts including zinc sulfate, zinc chloride and zinc fluoride.		
(a)	People who have a zinc deficiency can take hydrated zinc sulfate (ZnSO $_4$. x H $_2$ O) as a dietary supplement.		
	A student heated 4.38 g of hydrated zinc sulfate and obtained 2.46 g of anhydrous zinc sulfate.		
	Use these data to calculate the value of the integer x in $ZnSO_4.xH_2O$ Show your working.		
	(3 marks)		

(b)	Zinc chloride can be prepared in the laboratory by the reaction between zinc oxide and hydrochloric acid. The equation for the reaction is
	$ZnO + 2HCl \longrightarrow ZnCl_2 + H_2O$
	A 0.0830 mol sample of pure zinc oxide was added to $100\mathrm{cm^3}$ of $1.20\mathrm{moldm^{-3}}$ hydrochloric acid.
	Calculate the maximum mass of anhydrous zinc chloride that could be obtained from the products of this reaction.
	(4 marks)
(c)	Zinc chloride can also be prepared in the laboratory by the reaction between zinc and hydrogen chloride gas.
	$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$
	An impure sample of zinc powder with a mass of 5.68 g was reacted with hydrogen chloride gas until the reaction was complete. The zinc chloride produced had a mass of 10.7 g.
	Calculate the percentage purity of the zinc metal. Give your answer to 3 significant figures.
	(4 marks)

4	In this question give all your answers to the appropriate number of significant figures.
	Magnesium nitrate decomposes on heating to form magnesium oxide, nitrogen dioxide and oxygen as shown in the following equation.
	$2Mg(NO_3)_2(s) \longrightarrow 2MgO(s) + 4NO_2(g) + O_2(g)$
(a)	Thermal decomposition of a sample of magnesium nitrate produced 0.741 g of magnesium oxide.
(i)	Calculate the amount, in moles, of MgO in 0.741 g of magnesium oxide.
	(2 marks)
(ii)	Calculate the total amount, in moles, of gas produced from this sample of magnesium nitrate.
	(1 mark)
(b)	In another experiment, a different sample of magnesium nitrate decomposed to produce 0.402mol of gas. Calculate the volume, in dm³, that this gas would occupy at 333K and $1.00\times10^5\text{Pa}$. (The gas constant $R=8.31\text{J}\text{K}^{-1}\text{mol}^{-1}$)
	(3 marks)
(c)	A 0.0152 mol sample of magnesium oxide, produced from the decomposition of magnesium nitrate, was reacted with hydrochloric acid.
	MgO + 2HCl \longrightarrow MgCl ₂ + H ₂ O
	This 0.0152 mol sample of magnesium oxide required 32.4 cm ³ of hydrochloric acid for complete reaction. Use this information to calculate the concentration, in mol dm ⁻³ of the hydrochloric acid.
	(1 mark)